OKTATÁSI MINISZTÉRIUM

 MINISTRY OF EDUCATION
Instructions to examiners

Formal requirements:

- Mark the paper in ink, different in colour from the one used by the candidate. Indicate the errors, incomplete solutions, etc. in the conventional way.
- The first one of the rectangles under each problem shows the maximum attainable score on that problem. The points given by the examiner are to be entered in the rectangle next to that.
- If the solution is perfect, it is enough to enter the maximum scores in the appropriate rectangles.
- If the solution is incomplete or incorrect, please indicate the individual subtotals on the paper, too.

Assessment of content:

- The markscheme contains more than one solution for some of the problems. If the solution by the candidate is different, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- The subtotals in the markscheme can be further divided, but the scores awarded should always be whole numbers.
- If it is clear that the reasoning and the final answer are both correct, you may award the maximum score even if the solution is less detailed than the one in the markscheme.
- If there is a calculation error or inaccuracy in the solution, only take off the points for that part where the error is made. If the reasoning remains correct and the error is carried forward, the points for the rest of the solution should be awarded.
- In the case of a principal error, no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information obtained owing to the principal error is carried forward to the next section or in the next part of the problem and used correctly, the maximum score is due for the next part.
- Where the markscheme shows a unit in brackets, the solution should be considered complete without that unit as well.
- If there are more than one different approaches to a problem, assess only one of them (the one that is worth the largest number of points).
- Do not give extra points (i.e. more than the score due for the problem or part of problem).
- Do not take off points for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- Assess only two out of the three problems in part B of Paper II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.
I.

1.			
$x_{1}=-7$.	1 point		
$x_{2}=7$.	1 point		
	Total:	2 points	

2.

The sale price of the coat is 36000 Ft.	2 points		
	Total:	$\mathbf{2}$ points	

3.			
$A=2 \cdot(15 \cdot 12+15 \cdot 8+8 \cdot 12)=792$.	2 points		
The surface area of the cuboid: $792 \mathrm{~cm}^{2}$.	1 point	The point is only due if the unit is there.	
	Total:	$\mathbf{3}$ points	

4.

$t=\frac{\alpha^{\circ} \cdot r^{2} \pi}{360^{\circ}}=12 \pi \mathrm{~cm}^{2} \approx 37.7 \mathrm{~cm}^{2}$.	2 points	lward the 2 points if the correct answer is stated in either form.
	Total:	$\mathbf{2}$ points

5.			
B	Total:	2 points	

6.	The point is due for the diagram if the right angle is also indicated. The 1 point should also be awarded if there is no diagram or the diagram is incomplete but it is clear from the solution that the relationship of tangent and radius is known.	
The Pythagorean theorem applied to the right- angled triangle $A B C$ gives us: $e^{2}=13^{2}-5^{2}$.	The I point is also due if no explanation is given.	
$e=12 \mathrm{~cm}$.	Total:	$\mathbf{3}$ point

$\left.\begin{array}{|ll|l|l|}\hline \text { 9. } & & 1 \text { point } & \\ \hline \alpha_{1}=45^{\circ} . & 1 \text { point } & \\ \hline \alpha_{2}=135^{\circ} . & \text { Total: } & \text { 2 points } & \begin{array}{l}\text { lhe 2 points are also due if } \\ \text { the correct answers are } \\ \text { given in radians. }\end{array} \\ \text { If a period appears then 1 } \\ \text { point should be given }\end{array}\right]$.

| 10. | | 2 points for any
 correct solution.
 Do not give partial
 E.g. |
| :--- | :--- | :--- | :--- | :--- |

11.	2 points	3 points are due for finding the volume of the pot
$V=r^{2} \cdot \pi \cdot m=10^{2} \cdot \pi \cdot 14$.	1 point	lorrectly. If the diameter is substituted for the radius, award a maximum of 2 points out of the 3 points.
$V \approx 4398 \mathrm{~cm}^{3}$. $\left(\right.$ in case of $\pi \approx 3.14 \mathrm{~V}=4396 \mathrm{~cm}^{3}$)	1 point	l point should be given for any correct answer even in the absence of conversion.
5 litres $=5000 \mathrm{~cm}^{3}$, therefore the pot is not large enough for the soup.	Total:	4 points

12.

a)

$\|a\|=5$.	2 points	
	Total:	2 points

b)

(2;4).	2 points	The 2 points are also due if the answer was obtained by a correct figure
Total:	2 points	
II/A		
13.		
a)		
$5 \cdot(x-1)+4 x=40$,	2 points	
hence $x=5$.	2 points	
This is a solution of the original equation. /substitution or equivalence/	1 point	
Total:	5 points	
b)		
Domain: $\mathrm{x}>1$.	1 point*	
Using an identity of logarithms: $\lg 4(x-1)=2$	2 points	The $2+2$ points are also due if there is no reference to
By the definition of logarithm: $4(x-1)=100$.	2 points	the relationships applied.
$x=26$.	1 point	
Checking.	1 point*	
Total:	7 points	
* Both points are due if the candidate checks the root by substitution or compares it with the correctly stated domain and refers correctly to the equivalence of transformations. If the domain is not correct but the root is checked by substitution 2 points should be given. Award 1 point out of these 2 points if the domain is stated correctly but the root obtained is not compared with it. Also award 1 point if the domain is examined and $x=26$ is accepted based on that, but there is no reference to equivalent transformations.		

14.

a)

The terms of the sequence are $6 ; 6+d ; 6+2 d ;$ 1623.	1 point	
$6+3 d=1623$.	1 point	
$d=539$.	1 point	
The first number inserted: 545.	1 point	
The second number inserted: 1084.	1 point	
	Total:	$\mathbf{5}$ points

b)		
The numbers satisfying the conditions: $8 ; 12 ; 16 ; \ldots ; 1620$.	2 points	
These numbers are consecutive terms of an arithmetic progression.	1point	
$1620=8+4 \cdot(n-1)$.	1 point	
$n=404$.	1 point	

$S_{n}=\frac{8+1620}{2} \cdot 404$.	1 point	
$S_{n}=328856$.	1 point	
	Total:	7 points

15.

a)

15 metres.

	1 point	
Total	1 point	

b)	2 points	If more than one points of time are mentioned then no point can be given.
	Total:	$\mathbf{2}$ points

c)	2 points		
János.	Total:	2 points	

d)		
The number of orders possible: $3 \cdot 3 \cdot 2 \cdot 1=18$.	3 points	The 3 points are also due for a correct list of all the cases.
	Total:	$\mathbf{3}$ points

e)		The l point is also due if this is not stated but it is made clear by the solution.	
There are two cases to be investigated:	1 point		
If the Dolphins finished in a tie for the first place, then the number of possible orders is $\binom{3}{1} \cdot 2 \cdot 1 ;$	1 point		
if the Dolphins did not finish in the first place, then the number of possible orders is $\binom{3}{2}$.	1 point		
The number of all possible orders is 9.	Total: point	$\mathbf{4}$ points	The 4 points are also due for a correct list of all the cases. If the list is not complete but more than half of the possible cases are found 1 point should be given.

II/B

Out of problems 16 to 18, do not assess the one indicated by the candidate.

16.			
a)	Total:	1 point	
$49+49+14-14-47 \neq 0$.	points		
Thus the point does not lie on the circle.	The 2 points are also due if the answer based on a correct figure.		

b)			
$(x+1)^{2}+(y-1)^{2}=49$.	3 points		
$K(-1 ; 1)$.	1 point		
$r=7$.	1 point		
	Total:	$\mathbf{5}$ points	

c)		
The third vertex of the triangle lies on the perpendicular bisector of the base.	1 point	The point is also due if this is not stated but clearly implied by the solution.
The midpoint of the side $A B$ is $F(3.5 ; 3.5)$.	1 point	
A normal vector of the perpendicular bisector of the side $A B: \underline{n}(7 ; 7)$.	1 point	
The equation of the perpendicular bisector: $x+y=7$.	1 point	
The third vertex of the triangle is obtained as the intersection of the circle and the perpendicular bisector: $\left.\begin{array}{l} (x+1)^{2}+(y-1)^{2}=49 \\ y=7-x \end{array}\right\} .$	1 point	
$x^{2}-5 x-6=0$.	2 points	
$x_{1}=6 ; \quad x_{2}-1$.	1 point	
$y_{1}=1 ; \quad y_{2}=8$.	1 point	
$C_{1}(6 ; 1)$ and $C_{2}(-1 ; 8)$.	1 point	Can only be given if points A, B and C make a triangle indeed.
Total:	10 points	

17.

a)

$\frac{120}{85} \approx 1.41$.	1 point		
Jonatan apples cost about 41\% more.		1 point	
b)	Total:	2 points	

$=53250 \mathrm{Ft}$.	1 point		
	Total:	2 points	

c)			
The apples weigh 540 kg altogether.	1 point		
The average price is $\frac{53250}{540}=$	1 point		
$\approx 98.6 \mathrm{Ft}$.	1 point		
	Total:	$\mathbf{3}$ points	

d)		
The central angles representing the quantities of the various kinds of apples: $60 \mathrm{~kg}: \frac{60 \cdot 360^{\circ}}{540}=40^{\circ}$; $135 \mathrm{~kg}: 90^{\circ}$; $150 \mathrm{~kg}: 100^{\circ}$; $195 \mathrm{~kg}: 130^{\circ}$.	2 points	1 point if only 2 or 3 of the calculations are correct. Differences caused by correct rounding can be accepted.
	4 points	If it is not made clear by the pie chart which sector represents which kind of apples, award only 2 points
Tota	6 points	

e)		
The ratio of Jonatan and Idared apples that fell out: $1.25: 1$.	2 points	
The probability in question: $\frac{1.25}{2.25}=\frac{5}{9} \approx 0.56$.	2 points	
	Total:	4 points

| 18. | | |
| :--- | :--- | :--- | :--- |

